0 CpxTRS
↳1 RenamingProof (⇔, 0 ms)
↳2 CpxRelTRS
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 typed CpxTrs
↳5 OrderProof (LOWER BOUND(ID), 0 ms)
↳6 typed CpxTrs
↳7 RewriteLemmaProof (⇔, 1495 ms)
↳8 BOUNDS(2^n, INF)
g(f(x, y)) → f(f(g(g(x)), g(g(y))), f(g(g(x)), g(g(y))))
g(f(x, y)) → f(f(g(g(x)), g(g(y))), f(g(g(x)), g(g(y))))
Generator Equations:
gen_f2_0(0) ⇔ hole_f1_0
gen_f2_0(+(x, 1)) ⇔ f(hole_f1_0, gen_f2_0(x))
The following defined symbols remain to be analysed:
g
Induction Base:
g(gen_f2_0(+(1, 0)))
Induction Step:
g(gen_f2_0(+(1, +(n4_0, 1)))) →RΩ(1)
f(f(g(g(hole_f1_0)), g(g(gen_f2_0(+(1, n4_0))))), f(g(g(hole_f1_0)), g(g(gen_f2_0(+(1, n4_0)))))) →IH
f(f(g(g(hole_f1_0)), g(*3_0)), f(g(g(hole_f1_0)), g(g(gen_f2_0(+(1, n4_0)))))) →IH
f(f(g(g(hole_f1_0)), g(*3_0)), f(g(g(hole_f1_0)), g(*3_0)))
We have rt ∈ Ω(2n) and sz ∈ O(n). Thus, we have ircR ∈ Ω(2n)